
1 INTRODUCTION 
 
Generally, when rock mechanical problems are stu-
died, the salt rock mass is regarded as a continuum 
and a special emphasis is given to its visco-plastic 
behavior. However, it does not prove possible to de-
scribe comprehensively the stability behavior of mi-
ne cavities in salt rocks solely on the basis of the 
viscous properties and, for instance, time-dependent 
softening effects.  

When investigating the in situ observed fracture 
and dilatancy processes in chamber horizons, it tur-
ned out that the observed significant floor heave 
movements are linked with mechanically activated 
weakness surfaces and bedding planes in the mining 
floor. Such intensive floor lift phenomena have been 
observed in numerous cases, e.g. before the heavy 
rock burst in a trona (a water-bearing sodium carbo-
nate compound) salt mine in Wyoming, which hap-
pened in 1995 (Swanson & Boler 1995), and before 
the rock burst with a similar magnitude in 1996, 
which destroyed the eastern mining field of the Teut-
schenthal salt mine in the central area of Germany. 

The mechanisms of floor lifts and the develop-
ment of relevant failure processes in the working 
floor are closely connected with the softening and 
dilatancy properties of the solid salt rocks and with 
the existing bedding planes which can act as sliding 
faces. They are just those weakness planes at a short 
distance to the mined cavity which actually allow a 
significant softening process (Fig. 1). If fracture pro-

cesses happen inside the working floor, shear displa-
cements occur on the bedding planes within this zo-
ne. The extent of the heave movement essentially 
depends on the distance between the bottom of the 
cavity and the present bedding planes or discontinui-
ty surfaces, respectively. It further depends on the 
chamber width, on the age of the working panel, and 
on the mechanical properties of the solid salt rock 
and the imbedded weakness planes. 

 

 
 
Figure 1. Extreme floor lifts caused by numerous bedding pla-
nes in the floor. 

 
On existing discontinuities between viscous salt 

rock and such layers which are not able to creep like 
high-strength anhydrite rock beds, high shear stress-
ses can occur as well as rupture processes of consi-
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derable magnitude. This way, when in 1975 above 
the former Neustassfurt potash mine a large sinkhole 
developed as a result of a progressive caving to the 
surface, slide processes have played a decisive role 
(Salzer et al. 2004). These slide processes occurred 
between the Stassfurt potash seam in steep stratifica-
tion and the so-called main anhydrite which is found 
in the roof. By means of micro-seismic monitoring 
such shear movements and separation processes, res-
pectively, between rock salt and the subjacent main 
anhydrite can be detected by measurements of acous-
tic emission (Spies et al. 2004). 

In potash mining the contact properties of the 
bedding planes to the hanging and underlying salt 
bedrock affect the load bearing behavior of pillars to 
a considerable extent. The triaxial constraint of the 
pillars and, thus, their maximum bearing capacity are 
transmitted via the mechanical contact conditions at 
the transition to the surrounding rock masses. De-
pending on the properties of the solid salt rocks and 
the existent bedding planes, shear displacements on 
the contact zones can occur either slowly or abrupt-
ly, in connection with contour failure processes or 
even a pillar collapse.  

For assessing the safety and the stability of mine 
openings in salt rocks the mechanical behavior of 
bedding planes is of high practical importance. How-
ever, on this behavior very little research work has 
been done up to now. In cases where the roof or floor 
is stratified, the contour stability of cavities is essen-
tially determined by the mechanical properties of the 
bedding planes. This way, the observed collapse of 
compact pillars in potash mining can only be under-
stood, when a loss in cohesion and of adhesive fric-
tion on the contact to the surrounding salt rock mass 
is taken into consideration.  

 

 
 
Figure 2. Softening phenomena within the rock and on hori-
zontal bedding planes of a hard salt pillar. 

 
Particularly, under dynamic loading conditions just 

those mechanical properties of the salt rock mass get 
decisive significance which represent its discontinu-
um-mechanical attributes. These properties have been 
induced already during the saline sedimentation or 

later by tectonic processes. Therefore, for a compre-
hensive treatment of corresponding rock mechanical 
problems it is required to describe the softening be-
havior of both, the salt rocks and the imbedded weak-
ness planes (Fig. 2). 

Therefore, in the following, first of all a visco-
elasto-plastic constitutive model for salt rocks is pre-
sented which has been developed in the Institute for 
Rock Mechanics, Leipzig. This constitutive model 
implies both hardening/softening behavior and di-
latancy. Subsequently, a shear model including dis-
placement- and velocity-dependent softening for the 
application in salt formation with bedding planes is 
presented.  

2 VISCO-ELASTO-PLASTIC CONSTITUTIVE 
MODEL FOR SALT ROCKS 

A constitutive model for salt rocks must comprise 
the following deformation properties (Döring et al. 
1964): 

 
− reversible time-independent deformation compo-

nents (elasticity); 
− reversible time-dependent deformation compo-

nents (persistence);  
− irreversible permanent deformation components 

(viscosity, plasticity). 
 

Whereas plasticity is predominantly an attribute 
of polycrystalline rocks, viscosity is more a charac-
teristical feature of non-crystalline structures. 

Moreover, salt rocks – like other rock materials 
too – exhibit softening phenomena. Softening in this 
context stands for the decrease of strength of the 
rock material, when deformation is increasing (strain 
softening). Under this aspect, in dependence on the 
rock properties and the loading conditions, different 
features in their behavior appear. When an abrupt 
softening occurs, the phenomenon is called brittle 
fracture, whereas if gradual softening occurs the ma-
terial presents yield failure behavior. So, perfect 
plastic yield is interpreted as deformation without 
any softening.  

In the physical sense, softening is caused by the 
generation and accumulation of microcracks and de-
fects within the rock material which progressively 
develop to macrocracks. During this process, the 
strength drops to a certain residual level. This re-
sidual strength is mainly due to friction processes 
which run on the formed macroscopic fracture sur-
faces. Thus, this residual strength is regarded as the 
lower yield limit of the rock material in the post-
failure state.  

In the developed constitutive model the plastic 
behavior implying the softening of the polycrystal-
line salt rocks is described by a modified non-linear 
Mohr-Coulomb yield or failure criterion using a non-



associated flow rule. The Mohr-Coulomb fracture 
hypothesis in which the yield point and failure limit 
depend on the minimal principal stress σ3 is general-
ly accepted for rock materials.   

A failure criterion which satisfies the above 
mentioned demands on the basis of a modification of 
the Mohr-Coulomb model has been developed by 
Minkley (1997):  

3DB,1 N σ⋅+σ=σ φ  (1) 

with the function for friction: 

3
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respectively, 
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where σ3 = minimum principal stress; σ1,B = maxi-
mum principal stress at failure; σeff,B = σ1,B – σ3 = 
maximum effective stress at failure; σD(εp) = uniaxi-
al strength; σMAX(εp) = maximum effective strength; 
σφ(εp) = curvature parameter for strength surface; 
and εp = plastic shear deformation. 
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Figure 3. Yield points in the visco-elasto-plastic constitutive 
model. 

 
For clarification of the function of the respective 

parameters compare Figure 3 where the failure crite-
rion is plotted as σ1 – σ3 = f(σ3). σMAX is the maxi-
mum effective stress the rock can carry and to which 
the failure criterion moves towards with increasing 
minimum principal stress σ3. For salt rocks under 
mining conditions the non-linearity of the failure 
envelope can not be ignored. The non-linear failure 
criterion describes both compression and tension. 
More precisely, the tensile strength is given by:   

( ) ( )MAXD
2

MAXZ 2
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4
1

σ+σ⋅−σ⋅σ−σ+σ=σ φφφ (4) 

From the modified non-linear Mohr-Coulomb fai-
lure criterion (Eq. 3), the flow rule for plastic flow 
can be deduced (pressure with negative sign): 
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The plastic potential for non-associated flow is 
given by: 

3
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where σMAX,ψ (εp) = maximum effective strength at 
the dilatancy boundary; and σψ(εp) = curvature para-
meter of the dilatancy function. 

 
If the failure envelope is reached, plastic defor-

mations occur in addition to the elastic deformations. 
Using the flow rule, the plastic incremental deforma-
tion part can be determined: 
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Besides the elasto-plastic characteristic, most salt 
rocks show viscous behavior. Therefore, the elasto-
plastic softening model is already combined with the 
Burgers creep model. The incremental form of the 
Burgers model is given in the FLAC manuals (Itasca 
1998). The determination of the multiplier λ*

S in 
Equation (7) is obtained for fS = 0: 
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Nψ is the dilatancy function: 
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where tanβ0 and σψ depend on the plastic deforma-
tion εp.  
For volume increase (dilation) is valid: 
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The parameters which describe the dilatancy are: 
β0(εp) = ascent angle of the dilatancy curve; εp

Vol = 
f(εp) at uniaxial loading (σ3 = 0); and σψ(εp) = curva-
ture parameter of the dilatancy function. 

 
The model allows to describe the creep behavior 

including creep rupture. The primary creep phase is 
modelled by the Kelvin model with Kelvin shear 
modulus GK and Kelvin viscosity ηK. The secondary 
creep phase is controlled by the Maxwell viscosity 
ηM. The tertiary creep phase is governed by a dila-
tion softening mechanism. Under the assumption that 
ηK → ∞ and ηM → ∞ (i.e. no viscous deformation) 
the equations in (8) yield 

 MG2
1a

⋅
=   

and the material behavior coincides with the time-
independent elasto-plastic model section. Within the 
visco-elasto-plastic material model, the stress depen-
dency of the creep rate is governed by the exponen-
tial dependency of the Maxwell viscosity ηM on the 
deviatoric stress σV (Lux 1984): 

VmM
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In the constitutive model the short-time and the 
long-time strengths are taken into consideration by a 
yield limit which depends on the deformation rate.  

The rock mechanical quantities which determine 
this limit are the compressive strength σD at σ3 = 0 
and the maximum effective strength σMAX at σ3 → ∞ 
(Fig. 3). Both quantities depend on the deformation 
rate ε& . On the basis of results obtained in experimen-
tal tests on different salt rocks the following rela-
tionships have been introduced for this purpose: 
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The parameters used here have following mea-
ning: aM = reduction factor short-time strength → 
long-time strength; bM = velocity factor; and Wε&  = 
deformation velocity at the inflection point. 

 
In the modified non-linear Mohr-Coulomb plasti-

city model both the dilatancy boundary and the failu-
re limit are described by the yield function (Equation 
3). Here, the dilatancy boundary or damage limit, 
resp., is regarded as the lower yield envelope in the 
pre-failure state, whereas the residual strength is re-
garded as the lower yield limit in the post-failure 
region. The dependence of the yield limit on both the 
minimum principal stress σ3 and on the deformation 
velocity ε&  is described in a functional manner while 
the dependence on the plastic deformation εp is given 
in tables. This procedure allows a universal adapta-
tion to the pronounced non-linear deformation beha-
vior of the salt rocks.  

In Figure 4 the concept of the model is illustrated. 
This model distinguishes between 4 different defor-
mation components, the sum provides the total mag-
nitude of deformation ε.  

Below the dilatancy boundary the deformation is 
composed of the following components: 

vene ε+ε+ε=ε  (13) 
Above the dilatancy limit the total deformation is 

given by: 
pvene ε+ε+ε+ε=ε  (14) 

Both the elastic deformation component εe and 
the component of the elastic persistence εen are re-
versible quantities whereas both the viscous (εv) and 
the plastic portions of deformation εp are irreversible 
quantities. 
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Figure 4. Visco-elasto-plastic model concept. 



Furthermore, in the model it is assumed that volu-
me expansion is only provided by the elastic and the 
plastic volumetric deformation components: 

p
Vol

e
VolVol ε+ε=ε  (15) 

Then, in the case of compression, volume com-
paction occurs below the dilatancy limit (εe

Vol < 0), 
whereas plastic volume dilatation due to damaging 
processes will occur, when the dilatancy limit is ex-
ceeded, εp

Vol > 0. At the dilatancy boundary applies: 

0
d

d Vol =
ε

ε
 

Salt rocks possess elastic as well as plastic and 
viscous properties which are superimposing each 
other. The presented concept (Fig. 4) of the visco-
elasto-plastic constitutive model is based on the well 
accepted standard models of mechanics. This concept 
is applicable in a universal manner to both, salt rocks 
and non-saline rock materials too. The explained 
constitutive model is suitable for the description of 
the time-dependent mechanical behavior of salt rocks 
presenting both ductile and brittle material behavior.  
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Figure 5. Recalculation of strength tests carried out on rock salt.  
Upper part: stress-strain curves; lower part: dilatancy curves. 

 
In Figure 5 a comparison is shown between the 

stress-strain curves, which are obtained in laboratory 
tests on several rock salt specimens under uniaxial 
and triaxial loading conditions, and the results of the 

corresponding numerical recalculations. It is quite 
evident, that the strain-hardening behavior rises with 
increased confining pressure until the peak strength 
is reached, and the level of the post-failure stress drop 
reduces. At higher confining pressures, the dilatancy 
(Fig. 5, lower part) is heavily depressed. Laboratory 
test results and numeric recalculations are obviously 
in a good agreement.  

As noted already, the constitutive model also de-
scribes the viscous behavior of salt rocks until creep 
failure. The recalculation of a creep test carried out 
on a rock salt specimen is shown in Figure 6. 
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Figure 6. Recalculation of a creep test on a rock salt specimen: 
axial stress σ1 = 41 MPa and confining pressure σ3 = 3 MPa. 
Time-dependent development of the uniaxial strength parameter 
σD (compare equation 3) within the specimen. 

3 SHEAR MODEL FOR BEDDING PLANES  

For the understanding of the instability, which is ob-
served in fault zones, on crack surfaces, and bedding 
planes in the rock mass, it is necessary to describe 
the softening processes occurring on present me-
chanical weakness planes. For this purpose, two mo-
del concepts are commonly used in geomechanics 
(Brady 1990): 

 
− velocity-dependent softening (velocity weakening) 
− displacement-dependent softening (displacement 

weakening) 
 

The dependence of friction on the shear rate is 
known for a long time. As a result, instable sliding 
on natural rock joints has been accepted. It has to be 



noted that the conception, that the dynamic friction 
coefficient is smaller than the static coefficient, was 
the starting point for the interpretation of seismic in-
stability (Brace & Byerlee 1966).  

Dietrich (1978) has introduced a velocity-depen-
ding formulation by means of friction phenomena 
with respect to the change in the shear resistance or 
an equivalent friction coefficient: Thus, he can ex-
plain the dynamic instability, which is observed in 
the case of earthquakes, for instance. This formula-
tion has been refined, among others, by Rice (1983) 
and Ruina (1983). From their analytical solutions it 
follows that the friction coefficient increases instant-
aneously, when the sliding rate rises abruptly. But 
afterwards, the effective friction coefficient drops to 
a lower level. That means that a velocity-dependent 
shear softening process becomes active which pro-
vokes an unstable sliding. 

Displacement-dependent softening models descri-
be the drop of shear strength by assuming the pro-
gressive damaging of the unevenness of the joint pla-
nes at increasing shear displacement (Cundall & Hart 
1984, Indraratna & Haque 2000).  

In contrast to most joints in other types of rock, 
the properties connected with cohesion and adhesive 
bonds on discontinuities and bedding planes in salt 
rocks are of special importance – besides the friction 
itself (Fig. 8). In contrast to rocks like silicatic rock, 
already under quite normal loading conditions, as 
they are generally found in a mine, the salt rocks ex-
hibit to a great extent the capability to reactivate ad-
hesive and cohesive forces on reclosed parting pla-
nes (Minkley 1989).  

A further particularity of the shear behavior on 
bedding planes in salt rocks, is the evident depen-
dence on the velocity. The developed shear model 
(IfG 2005), which implies the displacement-depen-
dent and the velocity-dependent strength softening, 
is based on the concept of Cundell & Lemos (1990). 
The essential features of the shear model for bedding 
planes in salt rocks are: 

 
− Dependence of the adhesive friction coefficient 

on the displacement rate of the shear process 
− The shear stress versus shear displacement curve 

approaches a “target” shear strength of the bed-
ding plane 

− The “target” shear strength remains constant until 
the softening region is reached, then it decreases 
with the progressing shear displacement.  

 
In the incremental formulation, the shear model 

can be described as follows. For the relationship be-
tween normal loading and normal displacement we 
use: 

nNN uk ∆⋅=σ∆  (16) 

where kN is the normal stiffness and ∆un is the 
normal displacement between the joint surfaces.  
 

The model responds to the shear loading with an 
irreversible non-linear behavior. The shear stress in-
crement is calculated as follows: 

sS ukF ∆⋅⋅=τ∆  (17) 

Here, kS is the shear stiffness and ∆us is the shear 
displacement parallel to the shear plane (Fig. 7). 
 

The factor F which reduces the slope is a function 
of the distance between the current shear stress τ and 
the peak shear strength τMAX: 

MAX

1F
τ

τ
−=  (18) 

When taking into account the adhesive friction 
which is of essential importance for the bedding pla-
nes in salt rocks, the shear strength is found to be: 

cNMAX +σ⋅µ=τ  (19) 

with the friction coefficient:  

( )µ∆+µ=µ 1K  

which is consists of the coefficient of the kinetic 
friction: 
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and the coefficient of the adhesive friction: 

K

N1K

vel e σ
σ

−

⋅µ∆=µ∆  (21) 

Here are: c = cohesion; φR = angle of residual fric-
tion; i0 = upslide angle; σK = compressive strength 
in the contact area; and K1, K2 = curvature parame-
ters. 
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Figure 7. Shear model with strength softening. 
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Figure 8. Laboratory test results to determine peak and residual 
shear strengths on the bedding plane carnallitite / rock salt.  

 
 
The effects of the kinetic and the adhesive fric-

tion components are proportional to the normal loa-
ding σN on the bedding plane. The cohesion dimini-
shes only during very quick slide processes, whereas 
during a quite slow shear process the cohesive forces 
are maintained due to the specific characteristics of 
the salt which are covered by the rules of the physics 
of interfaces. 
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Figure 9. Recalculation of direct shear tests with different shear 
velocities v on the bedding plane carnallitite / rock salt;  
Normal loading σN = 10 MPa. 

 

The dependence of the friction on the velocity v 
of the active shear process is represented by the 
following function: 
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Accordingly, the velocity-dependent extent inside 
the adhesive friction coefficient can be expressed by: 

velMAX
K

K
vel f⋅µ∆=

µ
µ−µ

=µ∆  (23) 

In the physical interpretation, this means that in 
the case of a dynamical slide process at high shear 
velocities (fvel ≈ 1) an adhesive friction resistance 
must be overcome before a loss of strength appears. 
Under such conditions a significant drop in shear 
stress occurs (Fig. 9, upper diagram).  

In contrast to that, in slow shear processes (fvel ≈ 
0) no additional resistance of adhesive friction deve-
lops as in the case of a quick movement and, thus, 
cohesion is maintained. Such slide processes on the 
bedding planes run practically without any drop in 
shear stress (Fig. 9, lower diagram). 

Besides the velocity-dependent shear behavior 
also a strength softening that depends on the passed 
shear displacement has been taken into consideration, 
in the developed shear model. As soon as the peak 
shear strength is approached, a reduction of the ad-
hesive friction component occurs which depends on 
the plastic shear displacement. When the maximum 
shear strength τMAX has been approached up to a cer-
tain level r which must be preset, shear softening 
occurs if the following relationship is valid: 

( ) rForr1 MAX ≤τ⋅−≥τ  (24) 

The reduction of the adhesive friction along the 
shear displacement in incremental formulation fol-
lows the relationship: 

1L
u p

s
vel

p
S

∆
⋅µ∆−=µ∆  (25) 

where the increment of plastic shear displacement is 
defined by: 

( ) s
p
s uF1u ∆−=∆  (26) 

The shear parameter L1 determines the steepness 
of the shear stress drop in the post-failure region. 
With increasing shear displacement the peak shear 
strength will be passed, furthermore, the upslide 
angle i0 is lowered to reproduce the abrasion process 
resulting in a reduction of the unevenness between 
the joint faces and, additionally, mylonitisation. The 
difference between the present shear strain and the 
shear strain to reach the residual shear strength pla-
teau of smoothed shear planes by abrasion is descri-



bed by the parameter L2. For the reduction of the 
upslide angle in incremental form applies: 

2L
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s
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∆

⋅−=∆  (27) 

The incremental Equations (25) and (27) corres-
pond to an exponential reduction of the adhesive 
friction component and the upslide angle during pro-
ceeding shear displacements on the bedding plane in 
the post-failure state.  

The effective dilatancy angle i is calculated as 
follows: 

K
N

tanarctanarci µ−
σ
τ

=  (28) 

 
Table 1: Shear model parameters for bedding planes carnallitite 
/ rock salt. __________________________________________________ 
Parameter       Symbol     Value   Unit __________________________________________________ 
Residual friction angle   φR     29    deg 
Upslide angle       i0      5    deg 
Compressive strength     
contact area       σK     10    MPa 
Curvature parameter 1    K1    1.0   
Curvature parameter 2    K2    0.4 
Cohesion        c     0.7   MPa 
Maximum adhesive  
friction coefficient     ∆µMAX   1.5 
Softening distance 1    L1     0.003    m 
Softening distance 2    L2       0.08        m 
Distance parameter     r     0.08 
Velocity factor      bS     1.2 
Critical shear velocity    vK     0.00001  mm/s 
Shear stiffness      kS       8      GPa/m 
Normal stiffness      kN     10      GPa/m __________________________________________________ 
 
 

The parameters as required for the shear model 
are summarised in Table 1. The given quantities have 
been determined in several direct shear tests which 
were carried out on bedding planes between carnalli-
tite and rock salt (Fig. 8). For the presented recalcu-
lation of some shear tests the 3DEC-model as shown 
in Figure 10 has been used.  
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τ
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τ
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Figure 10. 3DEC-simulation of shear tests carried out on the 
bedding plane between carnallitite and rock salt. 

4 IMPLEMENTATION AND APPLICATION IN 
PRACTICE  
 

The visco-elasto-plastic constitutive model implying 
hardening/softening behavior has been programmed 
in C++ and is available as a DLL-file (Dynamic Lin-
ked Libraries) for high-performance calculation pro-
grams in the domains of continuum mechanics and 
discontinuum mechanics on the basis of: 

 
− finite differences: FLAC2D, FLAC3D 
− distinct elements: UDEC, 3DEC 
 

These programs use an explicit time-step algo-
rithm (Cundall & Board 1988) which is specifically 
suited for the modelling of non-linear processes and 
instability problems.  

The developed shear model for bedding planes 
can be implemented as a user-defined joint constitu-
tive model into the computation codes UDEC and 
3DEC in the domain of discontinuum mechanics. 

Examples of the verification and practical appli-
cation of the introduced constitutive models will be 
presented in another paper in this volume (Minkley 
et al. 2007). The usage of these constitutive models 
allows to describe the mechanical behaviour of the 
salt rock mass from the aspects of continuum me-
chanics as well as discontinuum mechanics. 
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